About Machine Readable Travel Documents Privacy Enhancement Using (Weakly) Non-Transferable Data Authentication

Jean Monnerat, Serge Vaudenay, Martin Vuagnoux

http://lasecwww.epfl.ch/

ICAO-MRTD Overview

- Data Structures and PKI
- MRTD Cryptography
- Security and Privacy Issues

2 Non-Transferable Proofs

Objectives

to enable inspecting authorities to securely identify visitors with the help of machine-readable digital information

- \rightarrow biometrics
- \rightarrow contactless IC chip
- \rightarrow digital signature + PKI
 - maintained by UN/ICAO (International Civil Aviation Organization)

MRTD History

- 1968: ICAO starts working on MRTD
- 1980: first standard (OCR-B Machine Readable Zone (MRZ))
- 1997: ICAO-NTWG (New Tech. WG) starts working on biometrics
- 2001 9/11: US want to speed up the process
- 2004: version 1.1 of standard with ICC
- 2006: extended access control under development in the EU

How to Distinguish a Compliant MRTD

MRTD in a Nutshell

- data authentication by digital signature + PKI aka passive authentication
- access control + key agreement based on MRZ_info aka basic access control (BAC)

 chip authentication by public-key cryptgraphy aka active authentication (AA)
 SV 2007

ICAO-MRTD Overview

Data Structures and PKI

- MRTD Cryptography
- Security and Privacy Issues

2 Non-Transferable Proofs

MRZ Example

- o document type
- issuing country
- holder name
- doc. number + CRC
- nationality
- date of birth + CRC
- gender
- date of expiry + CRC
- options + CRC

LDS Structure

- DG1 (mandatory): same as MRZ
- DG2 (mandatory): encoded face
- DG3: encoded finger(s)
- DG4: encoded eye(s)
- DG5: displayed portrait
- DG6: (reserved)
- DG7: displayed signature
- DG8: data feature(s)
- DG9: structure feature(s)
- DG10: substance feature(s)

- DG11: add. personal detail(s)
- DG12: add. document detail(s)
- DG13: optional detail(s)
- DG14: (reserved)
- DG15: KPu_{AA}
- DG16: person(s) to notify
- DG17: autom. border clearance
- DG18: electronic visa
- DG19: travel record(s)
- SO_D (mandatory)

SO_D Structure

- list of hash for data groups DG1–DG15
- formatted signature by DS (include: information about DS)
- (optional) C_{DS}

Hierarchy

- one PKI per country one CSCA (Country Signing Certificate Authority)
 C_{CSCA}: self-signed CSCA public key KPu_{CSCA}
 C_{CSCA} distributed to other countries by diplomatic means
- possibly many DS (Document Signer) per country
 C_{DS}: certificate for a DS public key KPu_{DS}
- SO_D: signature of (part of) LDS in MRTD

- ICAO-MRTD Overview
- Data Structures and PKI
- MRTD Cryptography
- Security and Privacy Issues
- 2 Non-Transferable Proofs

Basic Access Control

goal prevent from unauthorized access by the holder (privacy)

- read MRZ (OCR-B)
- extract MRZ_info
- run an authenticated key exchange based on MRZ_info
- open secure messaging based on the exchanged symmetric key
- $\rightarrow\,$ proves that reader knows MRZ_info

 MRZ_{info}

- o document type
- issuing country
- holder name
- o doc. number + CRC
- nationality
- date of birth + CRC
- gender
- date of expiry + CRC
- options + CRC

Secure Messaging

goal authentication, integrity, confidentiality of communication

 \rightarrow secure channel based on 3DES

Passive Authentication

goal authenticate LDS

- after getting SO_D, check the included certificate C_{DS} and the signature
- when loading a data group from LDS, check its hash with what is in SO_D
- \rightarrow stamp by DS on LDS

Active Authentication

goal authenticate the chip

- proves that ICC knows some secret key KPr_{AA} linked to a public key KPu_{AA} by a challenge-response protocol (KPu_{AA} in LDS authenticated by passive authentication)
- \rightarrow prove that the chip is not a clone

Active Authentication Protocol

Sequence of Steps for Identification

- ICAO-MRTD Overview
- Data Structures and PKI
- MRTD Cryptography
- Security and Privacy Issues
- **2** Non-Transferable Proofs

Coming From Wireless Technology

(claimed to be possible at a distance of 10m)

- detecting the proximity of an e-passport
 threat: giving valuable information to passport theafs
 threat: privacy (in some cases) by tracking people
- data skimming
 threat: privacy
- unauthorized access
 threat: privacy

Coming From IC Chip

- too much trust in automated process, lazzy identification
 threat: identity theft
- malicious cookies put in MRTD threat: privacy
- dependence on the technology: DoS attack could kill the IC chip threat: waste of time at border controls
- abuse of automatic recognition
 threat: privacy
- leakage of digital evidence threat: privacy

Digital Evidence: Challenge Semantics Attack

challenge semantics in AA:

• evidence that *D* existed when MRTD was queried

• evidence that MRTD was accessed at time *t*

RND.IFD =
$$H(\text{social}(t-1))$$

evidence = timestamp_t(social(t-1)||LDS|| Σ)

Digital Evidence: Transferable LDS Authentication

- signed personal data (name, age, gender, face, etc)
- can no longer hide/deny name, age, gender...
- when DG11 is used: more personal data (place of birth etc)
- personal profiles can be sold if they come with a proof

ICAO-MRTD

2 Non-Transferable Proofs

- Notions of Non-Transferability
- ZK Protocols for MRTD

Mafia Fraud + Fully Non-Transferable Proof

 \rightarrow need PKI for verifiers: maybe an overkill

Zero-Knowledge: Offline Non-Transferability

Sigma Protocols

Example: GPS Identification

Prover

Verifier

parameters: g, A, B, Spublic key: $I (I = g^s)$ secret key: $s \in [0, S]$

input: *I*, *g*, *A*, *B*, S

$$\begin{array}{lll} \text{pick } r \in [0, A-1] & \text{pick } c \in [0, B-1] \\ & x \leftarrow g^r & \stackrel{x}{\longrightarrow} \\ & \stackrel{c}{\longleftarrow} & \\ y \leftarrow r + cs & \stackrel{y}{\longrightarrow} & \text{check } g^y = xl^c \\ & & \text{and } 0 \leq y < A + (B-1)(S-1) \end{array}$$

Fiat-Shamir Signature

Basic Fiat-Shamir identification protocol:

Conversion into a signature:

- use random coins from H(message, previously seen transcript)
- simulate the verifier using these coins
- the signature is the final transcript

Honest vs Malicious Verifier

- for Sigma-protocols: the signature is unforgeable
- malicious verifier that simulates the previous conversion: it produces a signature
- consequences: Sigma-protocols are not ZK
- maybe honest-verifier ZK
- verifiers playing the challenge semantics are not honest
- challenge semantics in GPS identification: c = H(semantics, x)
- UDVSP [Baek et al. Asiacrypt05]: same

ICAO-MRTD

2 Non-Transferable Proofs

- Notions of Non-Transferability
- ZK Protocols for MRTD

Converting Sigma Protocols into ZK Protocols

Proof of Signature Knowledge based on GQ

Prover

Verifier

formated digest: *X* public key: *N*, *e* formated digest: *X* signature: *x*

$$\begin{array}{cccc} \operatorname{pick} y \in \mathbf{Z}_{N}^{*} & \operatorname{pick} c_{V} \in \{0,1\}^{\ell} \\ \operatorname{pick} c_{P} \in \{0,1\}^{\ell} & \xleftarrow{\gamma} & (\gamma,\delta) \leftarrow \operatorname{commit}(c_{V}) \\ Y \leftarrow y^{e} \mod N & \xrightarrow{Y,c_{P}} & \\ \operatorname{check}(c_{V},\gamma,\delta) & \xleftarrow{\delta,c_{V}} \\ z \leftarrow yx^{c} \mod N & \xrightarrow{z} & \operatorname{check} z^{e} = YX^{c} \pmod{N} \\ & (c = c_{P} \oplus c_{V}) \end{array}$$

Easy AA from Previous Passive Authentication

proof of holding a signature of SOD \downarrow proof of holding a secret signature of SOD

AA based on GPS

Prover

parameters: g, A, B, Spublic key: $I (I = g^s)$ secret key: $s \in [0, S]$ Verifier

input: *I*, *g*, *A*, *B*, S

$$\begin{array}{ll} \operatorname{pick} r \in [0, A-1] & \operatorname{pick} c_V \in [0, B-1] \\ \operatorname{pick} c_P \in [0, B-1] & \xleftarrow{\gamma} & (\gamma, \delta) \leftarrow \operatorname{commit}(c_V) \\ & x \leftarrow g^r & \xrightarrow{x, c_P} \\ & c\operatorname{heck}(c_V, \gamma, \delta) & \xleftarrow{\delta, c_V} \\ & y \leftarrow r + cs & \xrightarrow{y} & \operatorname{check} g^y = xl^c \\ & and \ 0 \leq y < A + (B-1)(S-1) \\ & (c = c_P + c_V \mod B) \end{array}$$

Conclusion

- o privacy threat of MRTD coming from wireless channel
- privacy threat of MRTD coming from leakage of evidence
- weakly non-transferable proofs
- proof of signature knowledge based on GQ
- fix of AA

Q & A