Attacks on the KeeLoq Block Cipher and Authentication Systems

Andrey Bogdanov

Chair for Communication Security Ruhr-University Bochum, Germany abogdanov@crypto.rub.de

3rd Conference on RFID Security, Malaga, 2007

イロト イヨト イヨト イヨト

Table of Contents

- KeeLoq Access Control System
 - Suppliers
 - Use Cases
- 2 KeeLoq Algorithm
 - Specification
 - Analysis
- 3 KeeLoq Protocols
 - Rolling CodesIFF
- 4 KeeLoq Key Generation
 - Specification
 - Analysis

・ 回 ト ・ ヨ ト ・ ヨ ト

KeeLoq Access Control System

KeeLoq Algorithm KeeLoq Protocols KeeLoq Key Generation Conclusion

Suppliers Use Cases

Suppliers

Definition

- KeeLoq was developed by Nanoteq in mid 80s
- KeeLoq is supplied by Microchip Technology Inc.
- KeeLoq is a complex automotive access control system including
 - encryption algorithm,
 - authentication protocols and
 - multiple key management schemes

イロト イヨト イヨト イヨト

KeeLoq Access Control System

KeeLoq Algorithm KeeLoq Protocols KeeLoq Key Generation Conclusion

Suppliers Use Cases

Use Cases

Use Cases

- KeeLoq is used by Chrysler, Daewoo, Fiat, GM, Honda, Toyota, Volvo, VW, Jaguar for car access
- Other use cases:
 - garage door openers (HomeLink),
 - property authentication,
 - product identification, etc.

イロト イヨト イヨト イヨト

Specification Analysis

KeeLoq Block Cipher


Definition

- KeeLoq is a block cipher
- **32-bit blocks** $Y = (y_{31}, y_{30}, \dots, y_1, y_0)$
- **64-bit key** $K = (k_{63}, k_{62}, \dots, k_1, k_0)$
- NLFSR-based = extremely unbalanced Feistel network
- One encryption = 528 encryption cycles
- Hardware footprint about 700 GE

・ロト ・四ト ・ヨト ・ヨト - 三

Specification Analysis

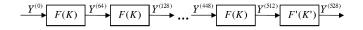
KeeLoq Block Cipher One encryption cycle and NLF

Nonlinear update function

 $\begin{aligned} & \mathsf{NLF}(x_4, x_3, x_2, x_1, x_0) = x_0 \oplus x_1 \oplus x_0 x_1 \\ & \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_0 x_4 \oplus x_0 x_3 \oplus x_2 x_4 \\ & \oplus x_0 x_1 x_4 \oplus x_0 x_2 x_4 \oplus x_1 x_3 x_4 \oplus x_2 x_3 x_4 \end{aligned}$

Feedback computation

$$\varphi = \mathsf{NLF}(y_{31}^{(i)}, y_{20}^{(i)}, y_{20}^{(i)}, y_{9}^{(i)}, y_{1}^{(i)}) \\ \oplus y_{16}^{(i)} \oplus y_{0}^{(i)} \oplus k_{0}^{(i)}$$


.(i)

Data and key update

Andrey Bogdanov

Specification Analysis

KeeLoq Block Cipher Round Structure

Notation

 $F(K) : \mathbb{F}_2^{32} \to \mathbb{F}_2^{32}$ = one round = 64 encryption cycles $F'(K') : \mathbb{F}_2^{32} \to \mathbb{F}_2^{32}$ = 1/4 round = 16 encryption cycles

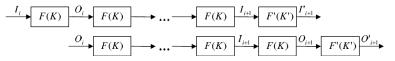
(日) (日) (日) (日) (日) (日) (日)

Specification Analysis

Basic Properties and Attack Principles

Key Schedule

- 8 full rounds $K = (k_{63}, ..., k_0)$ and 1/4 round $K' = (k_{15}, ..., k_0)$:
 - $\blacksquare K, K, K, K, K, K, K, K, K'$
- The KeeLoq key schedule is very self-similar ⇒ slide attacks


Resilience of NLF

NLF is 1-resilient, but not 2-resilient \Rightarrow linear approximations \Rightarrow linear analysis

イロト イボト イヨト 一座

Specification Analysis

Attack Outline Slide Attacks

Pseudo-slide group

If 16-bit subkey K' and a slide pair $(I_0, O_0), (I_1, O_1)$ are guessed, a *pseudo-slide group* can be generated if the whole code book is known:

$$[I_i, O_i]_{i=0}^{2^8-1},$$

where $O_i = F_K(I_i)$.

イロト イヨト イヨト イヨト

Specification Analysis

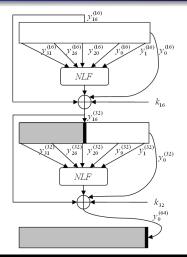
Attack Outline

Lemma

For uniformly distributed $x_4, x_3, x_2 \in GF(2)$ the following holds:

Pr {
$$NLF(x_4, x_3, x_2, x_1, x_0) = 0 \mid x_0 \oplus x_1 = 0$$
} = $\frac{5}{8}$

Pr {*NLF*(
$$x_4, x_3, x_2, x_1, x_0$$
) = 1 | $x_0 \oplus x_1 = 1$ } = $\frac{5}{8}$.


Corollary

NLF can be efficiently approximated by $x_0 \oplus x_1$.

イロト イヨト イヨト イヨト

Specification Analysis

Attack Outline Correlation Step $\Rightarrow k_{16} \oplus k_{32}$

Relations

$$\begin{array}{rcl} y_{16}^{(32)} & = & c_0 \oplus \mathbf{k_{16}} \\ y_0^{(54)} & = & \textit{NLF}(y_{31}^{(32)}, y_{26}^{(32)}, y_{20}^{(32)}, y_{9}^{(32)}, y_{1}^{(32)}) \\ & \oplus y_0^{(32)} \oplus (c_0 \oplus \mathbf{k_{16}}) \oplus \mathbf{k_{32}} \end{array}$$

Obtaining $k_{16} \oplus k_{32}$

Recover $k_{16} \oplus k_{32}$ statistically using the pseudo-slide group

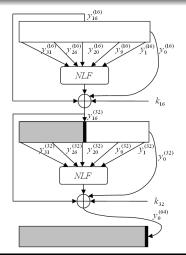
$$\mathbf{k_{16}} \oplus \mathbf{k_{32}} = y_0^{64} \oplus y_0^{32} \oplus c_0 \oplus \epsilon(I_i, K')$$

Pr{
$$\epsilon(I_i, K') = y_9^{(32)} \oplus y_1^{(32)}$$
} = 1/2+1/8

イロト イヨト イヨト イヨト

æ

Legend


= unknown = known = updated

Andrey Bogdanov

Attacks on KeeLog

Specification Analysis

Attack Outline Correlation Step $\Rightarrow k_{16} \oplus k_{32} \Rightarrow k_{16}, k_{32}$

Obtaining k_{16} and k_{32}

- Recover *k*₁₇ ⊕ *k*₃₃ and *k*₁₆ ⊕ *k*₁₇ ⊕ *k*₃₃ in a similar way using the pseudo-slide group

$$\begin{array}{l} \alpha = k_{16} \oplus k_{32} \\ \beta = k_{17} \oplus k_{33} \\ \gamma = k_{16} \oplus k_{17} \oplus k_{33} \end{array} \Rightarrow \begin{array}{l} k_{16} = \beta \oplus \gamma \\ k_{32} = k_{16} \oplus \alpha \end{array}$$

Recover (k_{47}, \ldots, k_{16}) using this technique

イロト イボト イヨト 一座

Legend

= unknown = known = updated

Andrey Bogdanov

Attacks on KeeLoq

Specification Analysis

Attack Outline Linear Step \Rightarrow (k_{63}, \ldots, k_{48})

- Now 48 key bits are known: $(k_{47}, \ldots, k_0) \Rightarrow$ compute $Y^{(48)}$
- **k**₄₈ = $y_{16}^{(64)} \oplus NLF(y_{31}^{(48)}, y_{26}^{(48)}, y_{20}^{(48)}, y_{9}^{(48)}, y_{1}^{(48)}) \oplus y_{16}^{(48)} \oplus y_{0}^{(48)}$
- Now 49 key bits are known: $(k_{48}, \ldots, k_0) \Rightarrow$ compute $Y^{(49)}$
- **k**₄₉ = $y_{17}^{(64)} \oplus NLF(y_{31}^{(49)}, y_{26}^{(49)}, y_{9}^{(49)}, y_{1}^{(49)}) \oplus y_{16}^{(49)} \oplus y_{0}^{(49)}$
- Now 50 key bits are known: $(k_{49}, \ldots, k_0) \Rightarrow$ compute $Y^{(50)}$

k₅₀ =
$$y_{18}^{(64)} \oplus NLF(y_{31}^{(50)}, y_{26}^{(50)}, y_{20}^{(50)}, y_{9}^{(50)}, y_{1}^{(50)}) \oplus y_{16}^{(50)} \oplus y_{0}^{(50)}$$

...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Specification Analysis

Attack Outline

- Guess 16 key bits: $K' = (k_{15}, \ldots, k_0)$
- Guess the output O₀ of the first round for some input I₀:

$$O_0=F(I_0)$$

- For each guess:
 - Generate a pseudo-slide group of size 2⁸
 - Determine (k_{47}, \ldots, k_{16}) statistically (correlation step)
 - Compute (k_{63}, \ldots, k_{48}) deterministically (linear step)
- Overall complexity: 2^{50.6} encryptions and 2³² PTs

Specification Analysis

Permutation Structure Analysis [CB07]

- For a random *n*-bit permutation: ln 2^{*n*} cycles
- About 22 cycles and about 11 even cycles for F_K
- Permutation $F_{K}^{8}(\cdot)$ has about $22/2^{\log 8} \approx 2.75$ even cycles
- To determine K':
 - Guess K'
 - Count the number of even cycles for $F_{K}^{8}(\cdot)$
 - If > 6 even cycles \Rightarrow incorrect hypothesis (random)
 - If \leq 6 even cycles \Rightarrow correct (8 iterations)

■ Complexity (K'): 2³⁷ encryptions and 2³² PTs

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ト - 三 ヨ

Specification Analysis

Combined Attack Linear Sliding Attack + Permutation Structure Analysis

- Recover $K' = (k_{15}, ..., k_0)$ using permutation structure analysis $\Rightarrow 2^{37}$
- Guess (*I*₀, *O*₀)
- For each guess perform the linear sliding attack (correlation and linear steps) $\Rightarrow 2^{33}$
- Overall complexity: 2³⁷ encryptions and 2³² PTs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Rolling Codes

Rolling Codes

T ightarrow V: KeeLoq($C_{15,0}|D_{11,0}|F$), $N_{27,0}|F|A$

KeeLoq-encrypted			Plaintext		
$C_{15,0}$	$D_{11,0}$	F	$N_{27,0}$	F	A

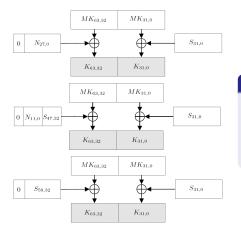
- $C_{15,0}$ = synchronized counter
- $D_{11,0}$ = discrimination value
- $F = F_{3,0}$ = functional bits
- $N_{27,0}$ = transponder's identifier
- A = several auxiliary bits

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Rolling Codes

Identify Friend or Foe (IFF)

- $V \rightarrow T$: R (32) $T \rightarrow V$: KEELOQ(R) (32)
 - R = 32-bit random challenge
 - Simple challenge-response protocol


◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

KeeLoq Access Control System KeeLoq Algorithm KeeLoq Protocols

Specification Analysis

Conclusion

XOR-Based Secure Key Generation

Notation			
S	=	seed (32, 48 or 60 bit)	
MK	=	64-bit global	
		manufacturer key	
K	=	64-bit individual key	
_			

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - つへぐ

Specification Analysis

Attacks on Key Generation

Scenario 1: Seed unknown

- K known and 32-bit seed \Rightarrow 32 bits of MK known \Rightarrow 2³²
- K known and 48-bit seed \Rightarrow 16 bits of *MK* known \Rightarrow 2⁴⁸
- K known and 60-bit seed \Rightarrow 4 bits of *MK* known \Rightarrow 2⁶⁰

Scenario 2: Seed known

- K completely defines MK
- Obtaining MK instantly from K

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

KeeLoq block cipher cryptanalyzed:

- Basic Attack: 2^{50.6} KeeLoq encryptions and 2³² PTs
- Enhanced Attack: 2³⁷ KeeLoq encryptions and 2³² PTs ⇒ best known attack working for the whole key space
- KeeLoq key management analyzed:
 - 3 vulnerable key generation schemes found
 - Breaking one key leads to the recovery of master key bits

・ロット (四) ((日) (日) (日)