UNIVERSITY OF Massachusetts Amherst

Maximalist Cryptography and Computation on the WISP UHF RFID Tag^F MASS

Hee-Jin Chae*, Daniel J. Yeager**, Joshua R. Smith**, and Kevin Fu*

*University of Massachusetts Amherst
Department of Computer Science

**Intel Research Seattle

Conference on RFIDSec-2007, 12 July 2007

Motivation

- Strong cryptography available for HF and LF tags
 - MIFARE DESFire: triple-DES security
 - Many ISO14443-compliant tags (HF)
- No support for such cryptography on UHF tag

UHF Security, Why now?

- EPC Gen2 replacing barcode systems
- 5 cents? Probably not.
- 5 dollars? Until recently NO!
 - Improvements in the efficiency of microelectronics
 - Conventional cryptography no longer beyond the reach of a general purpose UHF tag

Challenges for UHF RFID Security

- Extremely resource-limited
 - At the very low-end of RFID tags
- Longer reading range
 - More vulnerable to attacks
- No development platform available for UHF
 - RFIDGuardian [Rieback06]: HF
 - DemoTag [Aigner06]: HF
 - Proxmark3 [Westhues]: LF and HF

Minimalist vs. Maximalist Approaches

- Minimalist Approach
 - Minimize cryptographic operations to ensure feasibility on an RFID tag
 - Lightweight crypto [Juels04]
 - Often with serious vulnerabilities [Defend07, Kwon06, Li07]
 - Hard to quantify: No UHF development platform
- Maximalist Approach
 - Maximize the security on an RFID tag within given set of resources
 - Fully utilize available computational resources

WISP: Intel's Wireless Identification and Sensing Platform [Smith06]

- Powered wirelessly by RFID reader
- Implemented with microcontroller (TI MSP430)
 - 8MHz 16-bit microcontroller
 - 8KB ROM, 256 bytes RAM, 256 bytes Flash

- Follows EPC GEN1 protocol
 - ~2 msec for one interrogation
 - Transmits one 64 bit "packet" in one interrogation

WISP Constraints

- No power source on-board
- Microcontroller runs at 4MHz with max speed 8MHz
- Small RAM 256 bytes

Platform	Power	Computing	Storage	Distance
WISP	UHF RF	16-bit 4MHz (max. 8MHz)	8KB ROM 256 bytes RAM	< 4.5m
EPC Gen2	UHF RF	State machine	96/128 bits	< 7.5m
Mica2	Battery	8-bit 8MHz	128KB ROM 4KB RAM	< 50m

How much computation is available in one transaction?

WISP Lifecycle

WISP Lifecycle: Scope Trace

WISP Lifecycle: Scope Trace

WISP Lifecycle: Scope Trace

Symmetric Cryptography on WISP

- Is classical cryptography feasible on a general purpose UHF RFID tag?
- Why RC5?
 - Simple
 - Relatively small code size (1.6 Kbytes)
 - Small memory requirement

RC5 on WISP

Implementation of RC5-32/12/16

- 32-bit words, 12 rounds, 16-byte secret key
- 16-byte secret key hard-coded
- Expanded key table of size 2(r+1)
- Encrypt/decrypt 64-bit Tag ID

RC5 Functions	Execution Time (ms)	Throughput (bits/sec)
setupKey()	7.93	-
encrypt()	1.43	44755
decrypt()	1.39	46043

Can we do more?

- How much computation is available?
 - Theoretical maximum
 - Friis transmission equation
 - Experimental data on WISP performance
 - Published microcontroller power consumption specification
 - Actual WISP measurement
 - Measured number of cycles available during one lifecycle
 - With varying workloads writing to flash

Theoretical Maximum Computation

Model based on the Friis transmission equation

$$P_R = P_T - 20\log(4\pi d/\lambda) + G_T + G_R$$

Theoretical Maximum Computation

Model based on the Friis transmission equation

$$P_R = P_T - 20\log(4\pi d/\lambda) + G_T + G_R$$

Available Computation on WISP: Varying Workloads (at 3.0V)

Available Computation on WISP: Varying Workloads (at 3.0V)

Maximalist Cryptography: difficult, but feasible

- Minimizing the stack
- Minimizing flash writes
- Optimizing with precomputation

Conclusion

- General purpose UHF RFID tags with cryptographic capabilities are no longer infeasible
 - RC5 can be implemented in UHF RFID tags with
 - 4MHz computing speed
 - 256 bytes RAM
- Maximizing cryptography requires model that
 - Quantifies memory (read vs. write)
 - Quantifies power
 - Quantifies computation