Small-Footprint Block Cipher Design - How far can you go?

A. Bogdanov¹, L.R. Knudsen², G. Leander¹, C. Paar¹, A. Poschmann¹, M.J.B. Robshaw³, Y. Seurin³, C. Vikkelsoe²

¹Ruhr-University Bochum, Germany

²Technical University Denmark, Denmark

³France Telecom R&D, France

3rd Conference on RFID Security, Malaga, 2007

Table of Contents

- Motivation
- 2 PRESENT Specification
 - Substitution Layer (S-Box)
 - Permutation Layer
 - Key Schedule
- 3 Analysis of PRESENT
 - Differential Cryptanalysis
 - Linear Cryptanalysis
 - Algebraic Cryptanalysis
- 4 Hardware Implementation of PRESENT
 - Implementation Tools
 - Area Requirements
 - Comparison
- 5 Conclusion

Motivation
PRESENT Specification
Analysis of PRESENT
Hardware Implementation of PRESENT
Conclusion

Motivation Ultra Light-Weight Symmetric Cipher

Context

- Tiny computing devices in the future
- Pervasive computing becoming more common
- Known ciphers and the low-resource requirements
- ⇒ An ultra light-weight symmetric cipher needed

Motivation Ultra Light-Weight Block Cipher

Why a Block Cipher?

- Security properties well understood
- Sound building blocks and design principles available
- More universal
 - block cipher in e.g. CTR mode = synchronous stream cipher
- Attempt to build a block cipher with a smaller footprint than most dedicated stream ciphers

Motivation
PRESENT Specification
Analysis of PRESENT
Hardware Implementation of PRESENT
Conclusion

Motivation Ultra Light-Weight Block Cipher

Basic Design Principles

- At least 64-bit block and 80-bit key
- Highly iterative and repetitive design
- ⇒ the PRESENT block cipher!

Motivation

Existing Light-Weight Block Ciphers and PRESENT

Known Light-Weight Block Ciphers

- AES 3400 GE
- DES 3000 GE
- HIGHT 3000 GE
- serialized DES 2300 GE
- DESXL 2200 GE
- TEA 2100 GE and XTEA 2000 GE

PRESENT Block Cipher

about 1570 GE!

Requirements

Requirements on PRESENT

- The cipher is to be implemented in hardware
- Applications with moderate security levels (80 bit)
- Small amounts of encrypted data
- Often no rekeying possible
- Metrics: 1) security, 2) area, 3) power consumption, 4) timing
- RFID authentication devices ⇒ encryption only

Top-Level Specification of PRESENT

PRESENT

- Extremely simple substitution-permutation network (SPN)
- 80-bit key (optionally but not recommended 128 bit)
- 64-bit block
- 16 4x4 S-boxes (16 copies of the **same** S-box!)
- simple bit permutation, no linear layers
- 31 rounds

Top-Level Specification PRESENT

```
generateRoundKeys()

for i = 1 to 31 do

addRoundKey(STATE,K_i)

sBoxLayer(STATE)

pLayer(STATE)

end for

addRoundKey(STATE,K_{32})
```


S-Box Design Criteria

We denote the Fourier coefficient of S by

$$S_b^W(a) = \sum_{x \in \mathbb{F}_2^4} (-1)^{\langle b, S(x) \rangle + \langle a, x \rangle}.$$

1 For any fixed non-zero input difference $\Delta_I \in \mathbb{F}_2^4$ and any fixed non-zero output difference $\Delta_O \in \mathbb{F}_2^4$ we require

$$\#\{x\in\mathbb{F}_2^4|S(x)+S(x+\Delta_I)=\Delta_O\}\leq 4.$$

For any fixed non-zero input difference $\Delta_I \in \mathbb{F}_2^4$ and any fixed output difference $\Delta_O \in \mathbb{F}_2^4$ such that $\text{wt}(\Delta_I) = \text{wt}(\Delta_O) = 1$ we have

$$\{x \in \mathbb{F}_2^4 | S(x) + S(x + \Delta_I) = \Delta_O\} = \emptyset.$$

- 3 For all non-zero $a \in \mathbb{F}_2^4$ and all non-zero $b \in \mathbb{F}_4$ it holds that $|S_b^W(a)| \le 8$.
- 4 For all $a \in \mathbb{F}_2^4$ and all non-zero $b \in \mathbb{F}_4$ such that wt(a) = wt(b) = 1 it holds that $S_b^W(a) = \pm 4$.

S-box Specification and Additional Properties

Х	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
S[x]	С	5	6	В	9	0	A	D	3	E	F	8	4	7	1	2

S-box Selection

- The smallest (in hardware) 4x4 S-box ...
 - ... fulfilling the criteria above (differential and linear)
 - ... having no fixed points

Permutation Layer Specification

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
P(i)	0	16	32	48	1	17	33	49	2	18	34	50	3	19	35	51
i	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
P(i)	4	20	36	52	5	21	37	53	6	22	38	54	7	23	39	55
i	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
P(i)	8	24	40	56	9	25	41	57	10	26	42	58	11	27	43	59
i	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
P(i)	12	28	44	60	13	29	45	61	14	30	46	62	15	31	47	63

Permutation Layer Specification (Two Rounds)

Key Schedule Design Criteria

Criteria and Mechanisms

- Eliminate symmetry (e.g. to prevent slide attacks) ⇒ round-dependent constants (counter)
- Some diffusion ⇒ bit rotation
- Non-linearity and further diffusion ⇒ S-box
- Small-footprint implementation ⇒ recursive structure

Key Schedule Specification

Notation

- K 80-bit key register
- At round 1: $K = k_{79}k_{78}...k_0$ = the 80-bit user supplied key
- At round *i*: The 64-bit round key $K_i = \kappa_{63}\kappa_{62}\dots\kappa_0 = k_{79}k_{78}\dots k_{16}$ consists of the 64 leftmost bits of the current contents of register K

Updating K after round i = 1, 2, ..., 31:

- 1. $[k_{79}k_{78}...k_1k_0] = [k_{18}k_{17}...k_{20}k_{19}]$
- 2. $[k_{79}k_{78}k_{77}k_{76}] = S[k_{79}k_{78}k_{77}k_{76}]$
- 3. $[k_{19}k_{18}k_{17}k_{16}k_{15}] = [k_{19}k_{18}k_{17}k_{16}k_{15}] \oplus round_counter$

Key Schedule Properties

Dependency and Algebraic Degree

- All bits in the key register are a non-linear function of the 80-bit user-supplied key by round 21,
- Each bit in the key register after round 21 depends on at least 4 of the user-supplied key bits, and
- By the time we arrive at deriving K₃₂:
 - 6 bits are degree 2 expressions
 - 24 bits are of degree 3
 - remaining bits are degree 6 and 9 functions

Differential Cryptanalysis

Theorem (5-round differential characteristic)

Any five-round differential characteristic of PRESENT has a minimum of 10 active S-boxes. EXPERIMENTS: The 5-round bound is tight.

Resistance against Differential Cryptanalysis

- Any differential characteristic over 25 rounds must have at least 50 active S-boxes
- Maximum differential probability of PRESENT is 2⁻²
- The probability of a single 25-round characteristic is bounded by $(2^{-2})^{50} = 2^{-100}$
- 2¹⁰⁰ ≫ 2⁶⁴ (available PT/CT pairs)
- $2^{100} \gg 2^{80}$ (key length)

Linear Cryptanalysis

Theorem (4 round linear approximation bound)

Let ϵ_{4R} be the maximal bias of a linear approximation of four rounds of PRESENT. Then $\epsilon_{4R} \leq \frac{1}{27}$.

Resistance against Linear Cryptanalysis

■ The max. bias of a 28-round linear approximation is

$$2^6 \times \epsilon_{4R}^7 = 2^6 \times (2^{-7})^7 = 2^{-43}$$
.

- About $(2^{43})^2 = 2^{86}$ known PT/CT pairs needed
- $2^{86} \gg 2^{64}$ (pairs available)
- 2⁸⁶ > 2⁸⁰ (key length)

Algebraic Cryptanalysis

Equations

- The PRESENT 4x4 S-box can be described using 21 equations over *GF*(2) in 8 variables (4 inputs and 4 outputs)
- 11,067 quadratic equations in 4,216 variables for PRESENT

Analysis

- A small-scale version analyzed
- ▼ 7 S-boxes ⇒ 28-bit block, 2 rounds
- Buchberger and F₄ algorithms fail to deliver a solution in a reasonable time for this 2 round 28-bit PRESENT version

PRESENT Data Path Implementation

Implementation Tools

Details

- Implementation in VHDL
- Mentor Graphics Modelsim SE PLUS 5.8c for simulation
- Synopsys Design Compiler for synthesis and power simulation
- Core voltage of 1.8 Volt and temperature of 25°C

Area Requirements of PRESENT

module	GE	%	module	GE	%
data state	384.39	24.48	KS: key state	480.49	30.61
s-layer	448.45	28.57	KS: S-box	28.03	1.79
p-layer	0	0	KS: Rotation	0	0
counter: state	28.36	1.81	KS: counter-XOR	13.35	0.85
counter: combinatorial	12.35	0.79	key-XOR	170.84	10.88
other	3.67	0.23	,		
	•		sum	1569.93	100

Notes

- Data state, key state and 16 S-boxes account for 83.66% of the hardware complexity
- Input/output logic not considered

Comparison of Light-Weight Cipher Implementations

	Key	Block	Cycles per	Throughput at	Logic	Are	a			
	size	size	block	100KHz (Kbps)	process	GE	rel.			
Block ciphers										
PRESENT-80	80	64	32	200	$0.18 \mu m$	1570	1			
AES-128	128	128	1032	12.4	$0.35 \mu m$	3400	2.17			
HIGHT	128	64	1	6400	$0.25 \mu m$	3048	1.65			
mCrypton	96	64	13	492.3	$0.13 \mu m$	2681	1.71			
Camellia	128	128	20	640	$0.35 \mu m$	11350	7.23			
DES	56	64	144	44.4	$0.18 \mu m$	2309	1.47			
DESXL	184	64	144	44.4	$0.18\mu m$	2168	1.38			
Stream ciphers										
Trivium	80	1	1	100	$0.13\mu m$	2599	1.66			
Grain	80	1	1	100	0.13µm	1294	0.82			

Conclusions

Conclusions

- Extremely hardware-efficient block cipher ⇒ about 1570 GE
- Throughput of 200 Kbps at 100 KHz (2 bits per clock)
- Very low power consumption of $3.3\mu W$
- Very conservative design: simple SP-network
- 80-bit key
- Further cryptanalysis needed: Try to break it!